
Clawlike Tripodal Porphyrin Trimer: Ion-Controlled On-Off Fullerene **Binding**

Xiang Fang, Yi-Zhou Zhu,* and Jian-Yu Zheng*

State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China

Supporting Information

ABSTRACT: A practical method for the preparation of novel tripodal tris(porphyrinato-urea) TP₃ 1 was readily achieved. Because of its appreciable preorganized triangular cone-shaped cavity resulting from the intramolecular hydrogen bonds of the tripodal tris-urea backbone, this porphyrin trimer host was found to have a high affinity toward fullerenes to form stable inclusion complexes in solution. A 120-fold binding selectivity toward C₇₀ $(K_{\rm assoc} = 1.81 \times 10^7 \, {\rm M}^{-1})$ over C_{60} $(K_{\rm assoc} = 1.51 \times 10^5 \, {\rm M}^{-1})$ was further achieved in toluene. Moreover, the dissociation of such inclusion complexes can be easily realized by introducing H₂PO₄-,

and recapturing of the fullerene can be achieved after withdrawing H₂PO₄⁻ by Ca²⁺. A recyclable process for the inclusion and release of fullerene was therefore built by alternately feeding H₂PO₄⁻ and Ca²⁺. Benefiting from this approach, TP₃ 1 was sequentially applied to isolate C₇₀ from the C₆₀-enriched fullerene mixture successfully.

■ INTRODUCTION

Porphyrins and fullerenes, owing to their characteristic structural features, have attracted great interest and have been widely applied in host-guest chemistry,1 artificial photosynthesis,² and pharmaceutical and biological science.³⁻⁷ Porphyrins, which possess a highly delocalized π -electron-rich system, have been extensively used as π hosts for electron-deficient molecules, especially for fullerenes, which have excellent electron-accepting characteristics. ^{1,8} Enormous functional porphyrin-fullerene assemblies have been constructed through covalent and noncovalent pathways. Owing to its high efficiency in mimicking natural photosystems as well as its potential application in the separation and purification of fullerene, achieving assemblies of porphyrins and fullerenes by supramolecular organization has been actively studied during recent decades. 10,11

Host molecules with a single porphyrin unit were first introduced to interact with fullerenes, but the donor-acceptor complexes can be obtained only in the solid state and quickly dissociate in solution. 12-14 Receptors consisting of two porphyrin subunits were subsequently explored and found to be more suitable to form stable complexes both in solution and in solid state. Many acyclic bisporphyrin hosts with a variety of scaffolds and linkers were prepared, 15-19 and the binding affinity was significantly enhanced. A more efficient binding interaction has been further observed in cyclic bisporphyrins by Aida^{20,21} and Zhang.²² The suitable preorganized cavity, which is hardly accomplished in the acyclic porphyrin system, was considered to be the most crucial reason for extremely high binding constant.

With the aim of obtaining higher affinity toward fullerenes and overcoming the structural constraints, receptors with three or more porphyrin subunits were also designed. 23-29 Anderson reported a rigid cyclic porphyrin trimer that showed a higher affinity toward fullerenes than a cyclic zinc porphyrin dimer, indicating a positive influence of the third porphyrin unit on binding fullerenes.²³ Other porphyrin-containing hosts have also been synthesized by means of tridentate²⁴ and fourcoordinate²⁵ complexes, metal-coordinate self-assemblies,²⁶ complex of tripodal porphyrin trimer,²⁷ and porphyrin nanobarrel.²⁸ Although many excellent porphyrin-based hosts have been reported to encapsulate fullerene, ^{15–30} the syntheses of such receptors are usually low efficiency and time-consuming and thus inevitably face a lack of methods to realize their largescale preparation. The design of novel porphyrin host to balance its high affinity and easy access is still a challenge.

Because of its commercial availability and excellent multihydrogen-bond self-assembly property, tripodal tris(2-aminoethyl) amine (TREN)-based tris-urea receptors with functional arms have been widely utilized as anion-selective sensors and coordinated ligands. Small molecules such as benzene, 31,32 pyridine,³³ naphthalene,³⁴ and ferrocene³⁵ have been involved in such arm design. However, a larger chromophore is seldom considered as a functional arm. As a continuous focus on the porphyrinoids, 36-38 herein, we combined a TREN-based trisurea backbone and porphyrin arm as a new strategy for designing a fullerene receptor, which resulted in a stable and clawlike π -electron-rich cavity to capture an electron-deficient

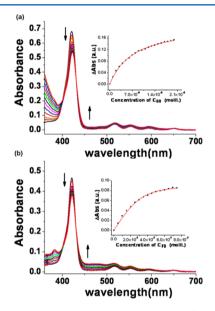
Received: November 25, 2013 Published: January 15, 2014

1184

Scheme 1. Structures of TP₃ 1, TSP₃ 1, DP₂ 2, and MP 2

Scheme 2. Synthesis of Porphyrin Host TP₃ 1

guest. The tunable anion-binding cavity of TREN-based trisurea will further benefit the host to realize ion-controlled guest binding.


In this article, simple porphyrin trimer TP₃ 1 (Scheme 1) was synthesized with readily accessible 5-(4-aminophenyl)-

10,15,20-tris(4-methylphenyl)-porphyrin and commercial TREN in high yield (Scheme 2). The one-pot two-step procedure under mild conditions will facilitate its large-scale preparation. Two more obvious advantages make it a good candidate to interact with fullerene. The conformational

preorganization through the intramolecular hydrogen bonds of the urea units will promote the interaction between porphyrin and fullerene via a 3D cooperative effect, further benefiting the stabilization of the complex. In addition, the cone cavity resulting from the hydrogen-bonding-driven preorganization of the tripodal tris-urea structure can be adjusted because of its reported strong oxoanion-binding preference, 31–35 which will provide an easy way to realize the controllability of the fullerene inclusion.

■ RESULTS AND DISCUSSION

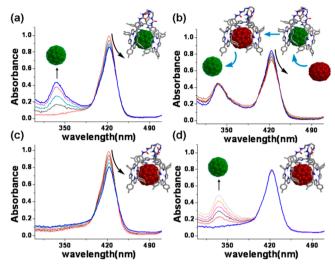
Properties of UV-Vis and Fluorescence Titration. Compound TP₃ 1 has been observed to show one typical Soret-band and four Q-bands, similar to the free-base porphyrin precursor (Figure 1). Accompanying the introduction of

Figure 1. UV—vis titration spectra in toluene at 25 °C of (a) **TP**₃ **1** (0.5 μ M) with 0–20 equiv C₆₀ (the inset shows the plot of $\Delta_{421 \text{ nm}}$ equiv of C₆₀ added) and (b) **TP**₃ **1** (0.3 μ M) with 0–2.5 equiv C₇₀ (the inset shows the plot of $\Delta_{421 \text{ nm}}$ equiv of C₇₀ added).

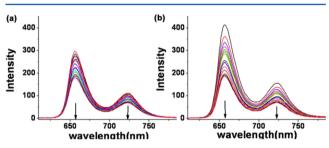
fullerenes is a red shift of the electronic absorption band and an obvious isosbestic point, revealing a strong binding interaction between TP₃ 1 with fullerenes. However, the reference compounds, dimeric host DP2 2 and monomeric host **MP 2** (Scheme 1), show no obvious π – π interaction with C₆₀/ C_{70} under the same titration conditions (Figures S21 and S22 in the Supporting Information), which indicates that the TREN tris-urea linker is important to construct and stabilize the inclusion complexes (fullerene@TP3 1). Moreover, tris-(porphyrinato-thiourea) host TSP₃ 1 (Scheme 1), which only replaced the carbon-oxygen double bonds of urea in TP₃ 1 with carbon-sulfur double bonds, also displays no apparent π - π interaction with C_{60}/C_{70} (Figures S23 and S24 in the Supporting Information). The weaker hydrogen-bonding tendency of the carbon-sulfur double bond makes it more difficult for TSP₃ 1 to form an effective preorganization similar to TP₃ 1; thus, it takes on a relatively loose and random conformation. The aforementioned control experiments indicate that the preorganization resulting from the intramolecular hydrogen bonds of the tripodal tris-urea backbone in TP₃ 1 is very critical for its binding ability toward fullerenes. This result is similar to that of the fullerene-directed

supramolecular peapods consisting of six carboxylic acid functionalities.³⁹

The detailed binding behaviors of $\mathbf{TP_3}$ 1 with C_{60} and C_{70} were characterized by UV—vis titration experiments in toluene (Figure 1). In the typical experiment, 0.5 μ M solutions of $\mathbf{TP_3}$ 1 were titrated against a solution of C_{60} with progressive concentrations (0–20.0 equiv) at room temperature. A decrease of absorption at 421 nm and a slight bathochromic shift of the Soret band with a tight observable isosbestic point (431 nm) suggest a real π - π interaction between $\mathbf{TP_3}$ 1 and C_{60} . The Job's plot analysis shows that a 1:1 complex has been constructed (Figure S18 in the Supporting Information). The association constant ($K_{\rm assoc}$) of complex C_{60} @ $\mathbf{TP_3}$ 1 was then estimated to be 1.51(0.03) × 10⁵ M⁻¹ (Table 1), which was subjected to standard nonlinear (1:1 mode) curve-fitting analysis (Figure 1a, inset).


Table 1. Association Constants for Fullerenes^a

host	$K_{\rm C_{60}}~({ m M}^{-1})$	$K_{\mathrm{C}_{70}} \left(\mathrm{M}^{-1} \right)$	$K_{\rm C_{70}}/K_{\rm C_{60}}$
TP ₃ 1	$1.51(0.03) \times 10^5$	$1.81(0.27) \times 10^7$	120
$TSP_3 1^b$			
$\mathrm{DP_2}\ 2^b$			
MP 2^b			


^aMeasured by UV-vis spectroscopy (see Supporting Information). ^bThese demonstrated small spectral changes and were difficult to nonlinear fit from the collected data.

Similar spectroscopic changes were also observed in the titration with C_{70} . Owing to the greater variation than that of C_{60} , a lower feeding amount of C_{70} was added in each portion. Aliquots of C₇₀ were added (up to 2.5 equiv) to a constant concentration of TP₃ 1 (0.3 μ M), and the association constant of complex C_{70} @TP₃ 1 was evaluated to be $1.81(0.27) \times 10^7$ M^{-1} , which is approximately 120-fold higher than C_{60} (Table 1). Although the observed selectivity of C_{70}/C_{60} is not the best one compared to the reported cases, ^{19–23,40} the coexistence of high association constants and good selectivity will benefit its application in practical fullerene separation. UV-vis competition experiments were further carried out to understand the selectivity, and the results are shown in Figure 2. After a stable complex of C₆₀@TP₃ 1 was shaped (Figure 2a), 0-1.6 equiv of C_{70} was added. The displacement of C_{60} by C_{70} was clearly observed, with an obvious decrease of the Soret band at 421 nm (Figure 2b). The specific isosbestic point at 429 nm indicated that the stable state of C₆₀@TP₃ 1 was broken and another complex, C70@TP3 1, was formed. In sharp contrast, the introduction of 0-10 equiv of C_{60} to the C_{70} \bigcirc TP_3 1 solution resulted in no obvious change (Figure 2c,d). The fluorescence determinations (both excited at their isosbestic points) demonstrate a greater quenching of the excited state of porphyrin by C₇₀ than C₆₀ (Figure 3), which also verifies the binding selectivity.

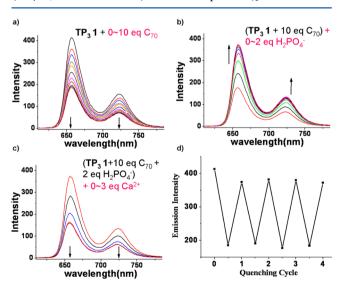

Ion-Controlled Experiments. In view of the key role of the tripodal tris-urea backbone observed in the contrast experiments as well as its reported good potential application in ion binding, an attempt at the ion-controlled inclusion and release of fullerenes was carried out (Figure 4a–c). When 2 equiv of $H_2PO_4^-$ (as the tetrabutylammonium salt) was introduced into the mixture of TP_3 1 and C_{70} , the quenched emission of porphyrin by C_{70} (Figure 4a) was found to be significantly recovered (Figure 4b). In contrast, TP_3 1 without binding fullerene shows little fluorescence quenching even

Figure 2. UV—vis titration spectra of competitive binding in toluene at 25 °C: (a) **TP**₃ **1** (0.8 μ M) + 0–10 equiv of C₆₀, (b) **TP**₃ **1** (0.8 μ M) + 10 equiv of C₆₀ and then 0–1.6 equiv of C₇₀, (c) **TP**₃ **1** (0.8 μ M) + 0–1.6 equiv of C₇₀, and (d) **TP**₃ **1** (0.8 μ M) + 1.6 equiv of C₇₀ and then 0–10 equiv of C₆₀.

Figure 3. Fluorescence titration spectra in toluene at 25 °C: (a) **TP**₃ **1** (0.4 μ M, excited at 431 nm) with 0–60 equiv of C₆₀ and (b) **TP**₃ **1** (0.5 μ M, excited at 429 nm) with 0–15 equiv of C₇₀.

Figure 4. Fluorescence changes of **TP**₃ **1** in toluene and ion-controlled on—off switch excited at 429 nm: (a) **TP**₃ **1** $(1.0 \,\mu\text{M}) + 0 - 10$ equiv of C_{70} , (b) **TP**₃ **1** $(1.0 \,\mu\text{M}) + 10$ equiv of C_{70} and then 0 - 2 equiv of $H_2PO_4^-$, and (c) **TP**₃ **1** $(1.0 \,\mu\text{M}) + 10$ equiv of $C_{70} + 2$ equiv $H_2PO_4^-$ and then 0 - 3 equiv of C_3^{2+} . (d) Four continuous association—disassociation cycles were recorded at 657 nm (emission intensity).

when an excess amount of $\mbox{H}_2\mbox{PO}_4^{\,-}$ was added (Figure S25 in the Supporting Information). In consideration of the insolubility of $Ca(H_2PO_4)_2$, 3 equiv of Ca^{2+} (as perchlorate salt) was applied to withdraw H₂PO₄ and to regenerate the $C_{70} \otimes TP_3$ 1 complex (Figure 4c). A UV-vis titration experiment was also carried out to witness the on-off property (Figure S26a-c in the Supporting Information). Such spectroscopic distinction is most readily accounted for the formation of strong anion-urea intermolecular hydrogen bonds and the resulting expanded cavity of the host. The enlarged cavity leads to a complete dissociation of the porphyrin-fullerene complex and release of fullerene. To our delight, unlike the reported ion-assisted fullerene-encapusulation systems, 41 the association-dissociation process was found to be repeatable and can be realized in several cycles by alternately feeding H₂PO₄⁻ and Ca²⁺ (Figure 4d). This reversible process is fast and highly efficient, which indicates an ion-controlled inclusion and release of fullerene was facilely achieved and could be potentially used as an ion-controlled on-off switch.

Properties of NMR Titration. The ¹H NMR spectrum of porphyrin trimer TP₃ 1 shows several broad peaks at room temperature in non-hydrogen-bonding solvent such as toluene- d_8 (Figure 5a). These can be ascribed to the existence of many

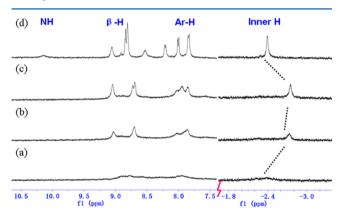
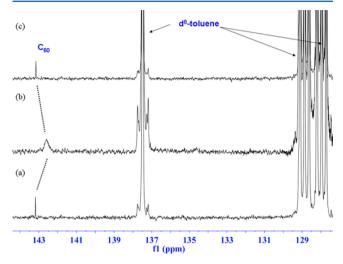



Figure 5. Partial ¹H NMR titration spectra (toluene- d_8 , 298 K) of (a) TP₃ 1 (1 mM), (b) TP₃ 1 (1 mM) + 0.5 equiv of C_{60} , (c) TP₃ 1 (1 mM) + 1.0 equiv of C_{60} , and (d) TP₃ 1 (1 mM) + 1.0 equiv of C_{60} and then 1.0 equiv of $[H_2PO_4^{-}] \cdot [n\text{-Bu}_4N]^+$.

types of hydrogen bonds, for instance, intramolecular and intermolecular hydrogen bonds. 42 In DMSO-d6, the broad peaks become distinctively sharp because the porphyrin trimer becomes more symmetrical and conformationally stable via strong hydrogen-bond interactions with DMSO molecules. To gain insight into the structures of the complexes and the control action, we performed ${}^{1}H$ NMR titrations in toluene- d_{8} . Indeed, the broad NMR pattern of TP₃ 1 in toluene- d_8 became sharper when 0.5-1.0 equiv of C₆₀ was added, indicating that a more symmetrical complex conformation was formed after the binding of C₆₀ (Figure 5b,c). The inner proton signal of freebase porphyrin also became sharp and was accompanied by a significant upfield shift from -2.383 to -2.755 ppm ($\Delta\delta$ = -0.372 ppm) because of the influence of the fullerene ring current. Such an obvious upfield shift reveals the existence of strong $\pi - \pi$ interactions between C_{60} and the porphyrin panels of TP₃ 1. Subsequently, a more clear splitting and sharpening of the signals was observed upon adding 1.0 equiv of H₂PO₄⁻ (as the tetrabutylammonium salt). The chemical shift of porphyrin

inner protons reshifted from -2.755 to -2.392 ppm ($\Delta\delta$ = 0.363 ppm), providing additional strong evidence in support of the dissociation of the complex (Figure 5d). The association and dissociation of complex C₆₀@TP₃ 1 was also supported by ¹³C NMR spectroscopy in toluene- d_8 (Figure 6). The spectrum

Figure 6. Partial ¹³C NMR titration spectra (toluene- d_8 , 298 K) of (a) C_{60} (1 mM), (b) **TP**₃ **1** (1 mM) + 1.0 equiv of C_{60} and (c) **TP**₃ **1** (1 mM) + 1.0 equiv of C_{60} and then 1.0 equiv of $[H_2PO_4^-] \cdot [n-Bu_4N]^+$.

of the 1:1 solution of C_{60} and TP_3 1 gave rise to a significant upfield shift from 143.185 (free C_{60} , Figure 6a) to 142.585 ppm (Figure 6b, $\Delta\delta = -0.600$ ppm), which is attributed to the shielding effect of the porphyrin units. In addition, the broad signal of C_{60} reveals a highly constrained motion of C_{60} in the triangular cone cavity.³⁰ It is less surprising that the chemical shift of C_{60} was downfield shifted back to 143.158 ppm ($\Delta\delta = 0.573$ ppm) when $H_2PO_4^-$ was further introduced into the

solution (Figure 6c), which is consistent with the results of the ¹H NMR, UV-vis, and fluorescence spectra.

The competitive binding experiments were also recorded through 13 C NMR titration (CDCl₃/CS₂, v/v 1:1). The sharp signals of uncomplexed C₆₀ and C₇₀ (Figure 7a,e) were found to be broadened with an obvious upshift when the equivalent host was added (Figure 7b,d). One equiv of C₇₀ was further fed into the mixture of **TP**₃ **1** and C₆₀ to determine the competitive binding (Figure 7c). Broad signals of C₇₀, similar to that of the mixture of **TP**₃ **1** and C₇₀, were observed. Meanwhile, the signal of C₆₀ became sharp again. This indicates that **TP**₃ **1** prefers binding C₇₀ through a 1:1 mixture of C₆₀ and C₇₀.

Theoretical Calculation. To gain deeper insight into the preorganized cone cavity of host TP₃ 1 and its binding selectivity for fullerenes, the optimized structures are calculated with Gaussian03 at the B3LYP/3-21G* level. 43,44 Host TP₃ 1 shows a cone cavity (Figure 8a,b), which is constructed and stabilized by three obvious intramolecular hydrogen bonds between the C=O and NH functions of the urea units. The hydrogen-bond distances were estimated to be 1.83, 2.07, and 1.93 Å. Meanwhile, the existence of another hydrogen bond (3.28 Å, 120°) indicates that one porphyrin moiety adopts a distortion model to ease the steric burden and resulted in a preorganized cone cavity. In spite the existence of a wellordered $C_{3\nu}$ symmetrical structure in both supramolecular complexes toward C₆₀ and C₇₀, C₇₀@TP₃ 1 (Figure 8c) adopts a more rigid tripodal conformation compared to C₆₀@TP₃ 1 (Figure 8d). Similar to the free TP₃ 1, three typical intramolecular hydrogen bonds (1.83, 2.07, and 1.93 Å) and a more loose one (3.30 Å) were observed in C_{70} @TP₃ 1, in contrast to two hydrogen bonds with 1.91 and 2.21 Å in C₆₀@ TP₃ 1. Moreover, the minimum distances between the three porphyrin planes and C_{70} (3.03, 3.16, and 3.22 Å) are obviously shorter than those in C_{60} @ TP_3 1 (3.06, 3.33, and 3.40 Å). The closer distance reveals a stronger π - π interaction between

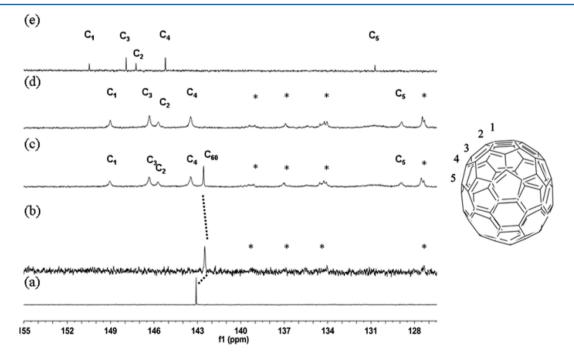


Figure 7. Partial 13 C NMR titration spectra (CDCl₃/CS₂, v/v 1:1, 298 K) of (a) C_{60} (1 mM), (b) TP₃ 1 (1 mM) + 1.0 equiv of C_{60} , (c) TP₃ 1 (1 mM) + 1.0 equiv of C_{70} , then 1.0 equiv of C_{70} , (d) TP₃ 1 (1 mM) + 1.0 equiv of C_{70} , and (e) C_{70} (1 mM). (The asterisks represent partial 13 C NMR signals of TP₃ 1.)

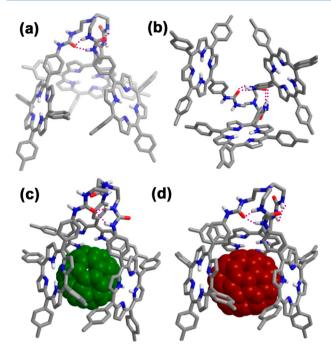


Figure 8. Optimized structure of TP_3 1: (a) side view, (b) bottom view, (c) C_{60} @ TP_3 1, and (d) C_{70} @ TP_3 1.

porphyrin and fullerene in the C_{70} @ TP_3 1 complex. These values are in good agreement with the experimental results of binding selectivity.

Fullerene Separation. As mentioned earlier, the preorganized cone cavity of TP₃ 1 had proven to be more suitable to restrain C₇₀ than C₆₀ by UV-vis, NMR titration, theoretical calculation, and competitive binding experiments. Moreover, the solubility of TP₃ 1 in toluene was largely decreased when encapsulating fullerene. On the basis of the facile synthesis, good selectivity of binding C70 over C60, and significant differentiation of solubility when forming the fullerene inclusion complex of TP₃ 1, we directed our efforts to achieve a simple, rapid, low-cost, and highly efficient way to separate C_{70} from C_{60}/C_{70} mixtures. Fullerene separation has been actively studied for pursuing a highly efficient and low-cost process since the 1990s. 21,45-47 It is, however, still a challenge to realize an easy and highly efficient pathway for such purification. In the present work, a saturated toluene solution of a C_{60}/C_{70} mixture was initially treated with 1 equiv of TP₃ 1 (or slightly less than the stoichiometric amount of C_{70}) at room temperature. The resulting solution was then sonicated for 1 min, and the precipitate was collected by filtration. The mother solution was evaporated to dryness. The separated solids were further dispersed in chloroform and treated with 3 equiv of H₂PO₄⁻ to release fullerenes as a black precipitate. The TP₃ 1 host was then regenerated with 3 equiv of Ca2+ for the next round of separation. The C_{70} -rich and C_{60} -rich products were evaluated by UV-vis absorption (Table 2 and Figures S30-36 in the Supporting Information). As an example, with respect to 2:1:0.98 mixture of $C_{60}/C_{70}/TP_3$ 1, the C_{70} abundance can be increased from 33 to 87% after a single extraction (Table 2, entry 1), and the C₆₀ abundance increased from 67 to 96% simultaneously. Even the molar content of C₇₀ was decreased to less 10% in the mixture; there is no obvious drop observed in the C₇₀ abundance after a single extraction. Furthermore, a C₇₀ abundance up to 95% can be obtained when the C₇₀-rich product from entry 1 (87%) was used as the

Table 2. Fullerene Extraction Selectivities a,b

entry	$C_{60}/C_{70}/TP_3$ 1	C ₇₀ -rich (%)	C ₆₀ -rich (%)
1	2:1:0.98	87	80
2	4:1:0.98	86	89
3	10:1:0.98	84	95
4 ^c	1:6.7:6.6	95	78
5^d	4:1:0.98	88	84
6^e	1:7.3:7.2	94	76

"Measured by UV—vis spectroscopy according to the reported work. ²² ^b All data was calculated using molarity. ^cThe initial fullerene mixture of entry 4 was the C_{70} -rich product of entry 1. ^dThe initial fullerene mixture of entry 5 was purchased commercially. ^eThe initial fullerene mixture of entry 6 was the C_{70} -rich product of entry 5.

raw mixture for the second cycle (Table 2, entry 4). A commercially available fullerene extract was further treated under this method, and C_{70} with a purity of 94% can be obtained after two cycles (Table 2, entry 6). It is noteworthy that only 30 min was needed for one cycle, and this approach should be a fast and cost-efficient way to purify C_{70} and C_{60} from fullerite (fullerene mixtures) without chromatography.

CONCLUSIONS

A novel porphyrin trimer, TP_3 1, has been readily synthesized via a one-pot two-step reaction with accessible amino porphyrin and commercial tris(2-aminoethyl)amine under mild conditions. Benefiting from the existence of intramolecular hydrogen bonds of tripodal tris-ureas, TP_3 1 displays a good binding ability toward fullerenes. An ion-controlled and reversible association and dissociation of fullerene was further realized with a $H_2PO_4^--Ca^{2+}$ system. Meanwhile, highly selective binding C_{70} over C_{60} (120-fold) was found, thus facilitating a fast and efficient separation of C_{70} from a fullerene mixture.

■ EXPERIMENTAL SECTION

All solvents were purified according to standard methods. All other chemicals (AR) were obtained from commercial sources and used without further purification. All NMR solvents were used as received. N'-Boc-2,2'-diaminodiethylamine was synthesized according to the reported work.⁴⁹ The isocyanation of amino porphyrin was carried out using triphosgene.⁵⁰

General Synthesis Procedure of the Hosts. Amino porphyrin and 4 equiv of Et_3N were dissolved in dry dichloromethane (DCM). Then, 1.2 mol equiv of triphosgene was added, and the mixture was stirred for 0.5 h at room temperature. After the amino porphyrin was completely consumed, a solution of the corresponding amine and Et_3N (2.0 equiv) in dry DCM was dropped slowly into the reaction mixture. The mixture was stirred vigorously for 5 h at room temperature. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography with DCM/methanol (20:1) as eluent. The porphyrin host was obtained as a purple solid by recrystallization from chloroform/methanol.

Synthesis of TP₃ 1. TP₃ 1 was prepared according to the general synthesis procedure. Step 1: 5-(4-aminophenyl)-10,15,20-tris(4-methyl-phenyl)-porphyrin (1.019 g, 1.52 mmol), Et₃N (856 μL, 6.11 mmol), and triphosgene (544.1 mg, 1.83 mmol); step 2: tris(2-aminoethyl)amine (74.4 mg, 0.51 mmol) and Et₃N (428 μL, 3.06 mmol). Column chromatography separation and recrystallization afford a purple solid TP₃ 1: 1.03 g, yield 91%. ¹H NMR (400 MHz, DMSO- d_6): δ 9.30 (s, 3H), 8.75 (d, J = 16.6 Hz, 12H), 8.65–8.50 (m, 6H), 8.45–8.31 (m, 6H), 8.09 (d, J = 8.2 Hz, 6H), 8.03 (d, J = 7.8 Hz, 12H), 7.59 (t, J = 16.9 Hz, 6H), 7.54–7.37 (m, 12H), 7.12–6.87 (m, 12H), 6.79 (s, 3H), 3.60–3.45 (m, 6H), 2.94–2.75 (m, 6H), 2.64 (s, 9H), 2.30 (s, 18H), -2.99 (s, 6H). ¹³C NMR (151 MHz, CDCl₃/

DMSO- d_6 , v/v 1:1): δ 155.9, 146.2, 143.1, 140.3, 138.3, 138.0, 137.0, 136.9, 136.4, 134.7, 134.0, 133.9, 133.5, 130.5, 127.3, 127.2, 126.9, 119.9, 119.3, 116.4, 116.3, 109.5, 54.2, 37.7, 21.0, 20.7. HR-MS (ESI): m/z [M + 2H]²⁺ calcd for $C_{150}H_{125}N_{19}O_3$, 1120.5117; found, 1120.5107.

Synthesis of DP₂ 2. DP₂ 2 was prepared according to the general synthesis procedure. Step 1: 5-(4-aminophenyl)-10,15,20-trisphenyl-porphyrin (30 mg, 0.048 mmol), Et₃N (28 μ L, 0.20 mmol), and triphosgene (17.8 mg, 0.06 mmol); step 2: N'-Boc-2,2'-diaminodie-thylamine (5.1 mg, 0.025 mmol) and Et₃N (14 μ L, 0.10 mmol). Column chromatography separation and recrystallization afford a purple solid **DP**₂ 2: 35 mg, yield 88%. ¹H NMR (400 MHz, DMSO- d_6): δ 9.07–9.08 (m, 2H), 8.93–8.86 (m, 4H), 8.85–8.74 (m, 12H), 8.25–8.16 (m, 8H), 8.14 (d, J = 6.6 Hz, 4H), 8.07 (t, J = 7.7 Hz, 4H), 7.90 (d, J = 8.3 Hz, 2H), 7.84–7.72 (m, 18H), 6.58–6.41 (m, 4H), 3.50–3.41 (m, 4H), 1.52 (s, 3H), 1.45 (s, 6H), –2.93 (s, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 142.3, 142.1, 135.4, 134.7, 134.5, 131.3, 127.8, 127.6, 126.8, 126.6, 120.2, 117.9, 46.0, 29.9, 28.6, 28.2, 8.7. HR-MS (ESI): m/z [M + H]⁺ calcd for C₉₉H₈₀N₁₃O₄, 1515.6482; found, 1515.6459.

Synthesis of MP 2. MP 2 was prepared according to the general synthesis procedure. Step 1: 5-(4-aminophenyl)-10,15,20-trisphenyl-porphyrin (30 mg, 0.048 mmol), Et₃N (28 μ L, 0.20 mmol), and triphosgene (17.8 mg, 0.06 mmol); step 2: diethylamine (3.7 mg, 0.05 mmol) and Et₃N (14 μ L, 0.10 mmol). Column chromatography separation and recrystallization afford a purple solid **MP 2**: 32 mg, yield 91%. ¹H NMR (400 MHz, CDCl₃): δ 8.91 (d, J = 4.7 Hz, 2H), 8.87–8.81 (m, 6H), 8.26–8.16 (m, 6H), 8.14 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H), 7.79–7.70 (m, 9H), 6.64 (s, 1H), 3.54 (q, J = 7.2 Hz, 4H), 1.37 (t, J = 7.1 Hz, 6H), -2.78 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 154.9, 142.4, 139.2, 136.7, 135.2, 134.7, 131.2, 127.8, 126.8, 120.2, 120.1, 118.1, 42.0, 14.2. HR-MS (ESI): m/z [M + H]⁺ calcd for C₄₉H₄₁N₆O, 729.3336; found, 729.3339; m/z [M + Na]⁺ calcd for C₄₉H₄₀N₆ONa, 751.3156; found, 751.3158.

Synthesis of TSP₃ 1. 5-(4-Aminophenyl)-10,15,20-tris(4-methylphenyl)-porphyrin (30 mg, 0.045 mmol) and Et₃N (25 μ L, 0.18 mmol) were dissolved in dry THF (10 mL). Then, 5 mL of CS2 (excess) was added, and the mixture was stirred for 5 h at room temperature. After the amino porphyrin was completely consumed, the solvent and CS2 were removed under vacuum. A solution of tris(2aminoethyl)amine (2.2 mg, 0.015 mmol) and Et₃N (13 μ L, 0.09 mmol) in dry DCM (5 mL) was dropped slowly into the reaction mixture. The mixture was stirred vigorously for 5 h at room temperature. The solvent was removed under vacuum, and the residue was purified by silica gel column chromatography with DCM/ methanol (10:1) as eluent. Column chromatography separation and recrystallization afford a purple solid TSP₃ 1: 28 mg, yield 82%. HR-MS (MALDI): m/z [M + Na + NH₄ + H]³⁺ calcd for C₁₅₀H₁₂₈N₂₀S₃Na, 776.3241; found, 776.3251. N-H signals of thioureas in TSP₃ 1 were difficult to observe in its ¹H NMR spectrum (Figure S8 in the Supporting Information), whereas the ¹H and ¹³C NMR spectra of the zinc complex of TSP₃ 1 showed good one-to-one correspondence between structure and signal (Figure S9 and S10 in the Supporting Information). ¹H NMR (TSP₃ 1-Zn, 400 MHz, DMSO- d_6): δ 9.28 (s, 3H), 8.80 (d, J = 6.6 Hz, 6H), 8.80 (s, 3H), 8.77-8.73 (m, 18H), 8.10 (d, J = 8.1 Hz, 6H), 8.06 (d, J = 7.0 Hz, 18H), 7.74 (d, J = 8.3 Hz, 6H), 7.60 (d, J = 7.5 Hz, 18H), 3.96–3.88 (m, 6H), 3.55-3.47 (m, 6H), 2.67 (s, 27H). ¹³C NMR (TSP₃ 1-Zn, 101 MHz, DMSO- d_6): δ 179.6, 149.4, 140.4, 139.9, 138.9, 136.6, 134.1, 133.7, 131.6, 131.4, 127.2, 124.5, 120.3, 120.0, 45.0, 29.0, 21.1.

■ ASSOCIATED CONTENT

Supporting Information

Detailed experimental procedures and characteristic data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: zhuyizhou@nankai.edu.cn (Y.-Z.Z.).

*E-mail: jyzheng@nankai.edu.cn (J.-Y.Z.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the 973 Program (2011CB932502) and the NSFC (nos. 21172126 and 21272123) for their generous financial support.

REFERENCES

- (1) Tashiro, K.; Aida, T. Chem. Soc. Rev. 2007, 36, 189-197.
- (2) Wasielewski, M. R. Chem. Rev. 1992, 92, 435-461.
- (3) Yang, L. Q.; Zhou, H. X.; You, W. J. Phys. Chem. C 2010, 114, 16793-16800.
- (4) Dang, X. D.; Mikhailovsky, A.; Nguyen, T. Q. Appl. Phys. Lett. **2010**, 97, 113303-1–11303-3.
- (5) Ros, T. D.; Prato, M. Chem. Commun. 1999, 663-669.
- (6) Nakamura, E.; Tokuyama, H.; Yamago, S. J. Am. Chem. Soc. 1993, 115, 7918–7919.
- (7) Kenyon, G. L.; Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. P.; Srdanov, G.; Wudl, F. *J. Am. Chem. Soc.* **1993**, *115*, 6506–6509.
- (8) Echegoyen, L.; Echegoyen, L. E. Acc. Chem. Res. 1998, 31, 593-601.
- (9) For selected examples, see: (a) Martín, N.; Sánchez, L.; Illescas, B.; Pérez, I. Chem. Rev. 1998, 98, 2527–2548. (b) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34, 40–48. (c) Guldi, D. M. Chem. Soc. Rev. 2002, 31, 22–36. (d) Kesti, T. J.; Tkachenko, N. V.; Vehmanen, V.; Yamada, H.; Imahori, H.; Fukuzumi, S.; Lemmetyinen, H. J. Am. Chem. Soc. 2002, 124, 8067–8077. (e) Charvet, R.; Yamamoto, Y.; Sasaki, T.; Kim, J.; Kato, K.; Takata, M.; Saeki, A.; Seki, S.; Aida, T. J. Am. Chem. Soc. 2012, 134, 2524–2527.
- (10) Barber, J. Chem. Soc. Rev. 2009, 38, 185-195.
- (11) Hoff, A. J.; Deisenhofer, J. Phys. Rep. 1997, 287, 1-247.
- (12) Boyd, P. D. W.; Reed, C. A. Acc. Chem. Res. 2005, 38, 235-242.
- (13) (a) Olmstead, M. M.; Nurco, D. J. Cryst. Growth Des. 2006, 6, 109–113. (b) Hosseini, A.; Hodgson, M. C.; Tham, F. S.; Reed, C. A.; Boyd, P. W. Cryst. Growth Des. 2006, 6, 397–403.
- (14) Boyd, P. D. W.; Hodgson, M. C.; Rickard, C. E. F.; Oliver, A. G.; Chaker, L.; Brothers, P. J.; Bolskar, R. D.; Tham, F. S.; Reed, C. A. J. Am. Chem. Soc. 1999, 121, 10487–10495.
- (15) Sun, D.; Tham, F. S.; Reed, C. A.; Chaker, L.; Burgess, M.; Boyd, P. D. W. J. Am. Chem. Soc. 2000, 122, 10704–10705.
- (16) Ayabe, M.; Ikeda, A.; Kubo, Y.; Takeuchi, M.; Shinkai, S. Angew. Chem., Int. Ed. 2002, 41, 2790–2792.
- (17) Wu, Z.-Q.; Shao, X.-B.; Li, C.; Hou, J.-L.; Wang, K.; Jiang, X.-K.; Li, Z.-T. J. Am. Chem. Soc. 2005, 127, 17460–17468.
- (18) Hosseini, A.; Taylor, S.; Accorsi, G.; Armaroli, N.; Reed, C. A.; Boyd, P. D. W. J. Am. Chem. Soc. 2006, 128, 15903–15913.
- (19) Jurow, M.; Farley, C.; Pabon, C.; Hageman, B.; Dolora, A.; Drain, C. M. Chem. Commun. 2012, 48, 4731–4733.
- (20) Tashiro, K.; Aida, T.; Zheng, J.-Y.; Kinbara, K.; Saigo, K.; Sakamoto, S.; Yamaguchi, K. J. Am. Chem. Soc. 1999, 121, 9477–9478.
- (21) Zheng, J.-Y.; Tashiro, K.; Hirabayashi, Y.; Kinbara, K.; Saigo, K.; Aida, T.; Sakamoto, S.; Yamaguchi, K. *Angew. Chem., Int. Ed.* **2001**, *40*, 1857–1861.
- (22) Zhang, C. X.; Wang, Q.; Long, H.; Zhang, W. J. Am. Chem. Soc. **2011**, 133, 20995–21001.
- (23) Gil-Ramírez, G.; Karlen, S. D.; Shundo, A.; Porfyrakis, K.; Ito, Y.; Briggs, G. A. D.; Morton, J. J. L.; Anderson, H. L. *Org. Lett.* **2010**, 12, 3544–3547.
- (24) Tong, L. H.; Wietor, J.-L.; Clegg, W.; Raithby, P. R.; Pascu, S. I.; Sanders, J. K. M. *Chem.—Eur. J.* **2008**, *14*, 3035–3044.
- (25) Ouchi, A.; Tashiro, K.; Yamaguchi, K.; Tsuchiya, T.; Akasaka, T.; Aida, T. Angew. Chem., Int. Ed. 2006, 45, 3542–3546.

- (26) Schmittel, M.; He, B.; Mal, P. Org. Lett. 2008, 10, 2513-2516.
- (27) Takai, A.; Chkounda, M.; Eggenspiller, A.; Gros, C. P.; Lachkar, M.; Barbe, J.-M.; Fukuzumi, S. *J. Am. Chem. Soc.* **2010**, *132*, 4477–4489
- (28) Song, J.; Aratani, N.; Shinokubo, H.; Osuka, A. J. Am. Chem. Soc. **2010**, 132, 16356–16357.
- (29) Mulholland, A. R.; Woodward, C. P.; Langford, S. J. Chem. Commun. 2011, 47, 1494–1496.
- (30) (a) Pérez, E. M.; Martin, N. Chem. Soc. Rev. 2008, 37, 1512–1519. (b) Canevet, D.; Pérez, E. M.; Martin, N. Angew. Chem., Int. Ed. 2011, 50, 9248–9259.
- (31) Valiyaveettil, S.; Engbersen, J. F. J.; Verboom, W.; Reinhoudt, D. N. Angew. Chem., Int. Ed. Engl. 1993, 32, 900–901.
- (32) (a) Custelcean, R.; Moyer, B. A.; Hay, B. P. Chem. Commun. 2005, 5971–5973. (b) Jose, D. A.; Kumar, D. K.; Ganguly, B.; Das, A. Inorg. Chem. 2007, 46, 5817–5819. (c) Ravikumar, I.; Ghosh, P. Chem. Commun. 2010, 46, 1082–1084. (d) Jia, C.; Wu, B.; Li, S.; Huang, X.; Zhao, Q.; Li, Q.-S.; Yang, X.-J. Angew. Chem., Int. Ed. 2011, 50, 486–490. (e) Busschaert, N.; Wenzel, M.; Light, M. E.; Iglesias-Hernández, P.; Pérez-Tomás, R.; Gale, P. A. J. Am. Chem. Soc. 2011, 133, 14136–14148. (f) Pramanik, A.; Powell, D. R.; Wong, B. M.; Hossain, M. A. Inorg. Chem. 2012, 51, 4274–4284.
- (33) (a) Wu, B.; Liang, J.; Yang, J.; Jia, C.; Yang, X.-J.; Zhang, H.; Tang, N.; Janiak, C. Chem. Commun. 2008, 1762–1764. (b) Custelcean, R.; Remy, P.; Bonnesen, P. V.; Jiang, D.-E.; Moyer, B. A. Angew. Chem., Int. Ed. 2008, 47, 1866–1870. (c) Custelcean, R.; Bock, A.; Moyer, B. A. J. Am. Chem. Soc. 2010, 132, 7177–7185.
- (34) (a) Xie, H.; Yi, S.; Yang, X.; Wu, S. New J. Chem. 1999, 23, 1105–1110. (b) Lakshminarayanan, P. S.; Ravikumar, I.; Suresh, E.; Ghosh, P. Chem. Commun. 2007, 5214–5215.
- (35) (a) Li, M.; Wu, B.; Jia, C.; Huang, X.; Zhao, Q.; Shao, S.; Yang, X.-J. Chem.—Eur. J. **2011**, 17, 2272—2280. (b) Huang, X.; Wu, B.; Jia, C.; Hay, B. P.; Li, M.; Yang, X.-J. Chem.—Eur. J. **2013**, 19, 9034—9041.
- (36) Ouyang, Q.; Zhu, Y.-Z.; Zhang, C.-H.; Yan, K.-Q.; Li, Y.-C.; Zheng, J.-Y. Org. Lett. **2009**, 11, 5266–5269.
- (37) Chen, C.; Zhu, Y.-Z.; Fan, Q.-J.; Song, H.-B.; Zheng, J.-Y. Tetrahedron Lett. 2013, 54, 4143-4147.
- (38) Xu, H.; Zhu, Y.-Z.; Zheng, J.-Y. Supramol. Chem. 2007, 19, 365–376.
- (39) Yamaguchi, T.; Ishii, N.; Tashiro, K.; Aida, T. J. Am. Chem. Soc. **2003**, 125, 13934–13935.
- (40) (a) Haino, T.; Yanase, M.; Fukazawa, Y. Angew. Chem., Int. Ed. **1998**, 37, 997–998. (b) Wang, J.; Bodige, S. G.; Watson, W. H.; Gutsche, C. D. J. Org. Chem. **2000**, 65, 8260–8263. (c) Kawase, T.; Tanaka, K.; Seirai, Y.; Shiono, N.; Oda, M. Angew. Chem., Int. Ed. **2003**, 42, 5597–5600.
- (41) (a) Ikeda, A.; Suzuki, Y.; Yoshimura, M.; Shinkai, S. *Tetrahedron* **1998**, *54*, 2497–2508. (b) Ikeda, A.; Udzu, H.; Yoshimura, M.; Shinkai, S. *Tetrahedron* **2000**, *56*, 1825–1832. (c) Haino, T.; Yamanaka, Y.; Araki, H.; Fukazawa, Y. *Chem. Commun.* **2002**, 402–403. (d) Nielsen, K. A.; Cho, W.-S.; Sarova, G. H.; Petersen, B. M.; Bond, A. D.; Becher, J.; Jensen, F.; Guldi, D. M.; Sessler, J. L.; Jeppesen, J. O. *Angew. Chem., Int. Ed.* **2006**, *45*, 6848–6853. (e) Nobusawa, K.; Akiyama, M.; Ikeda, A.; Naito, M. *J. Mater. Chem.* **2012**, 22, 22610–22613.
- (42) Amendola, V.; Fabbrizzi, L.; Mosca, L. Chem. Soc. Rev. 2010, 39, 3889–3915.
- (43) Frisch, M. J.; et al. *Gaussian 03*, revision E.01; Gaussian, Inc.: Wallingford, CT, 2003. For complete details, see Figures S37–S39 and Tables S4–S6 in the Supporting Information.
- (44) For a general review on DFT applications of porphyrin-fullerene systems, see: Zandler, M. E.; D'Souza, F. C. R. *Chemie* **2006**, *9*, 960–981.
- (45) Atwood, J. L.; Koutsantonis, G. A.; Raston, C. L. Nature 1994, 368, 229–231.
- (46) Khemani, K. C.; Prato, M.; Wudl, F. J. Org. Chem. 1992, 57, 3254–3256.
- (47) Huerta, E.; Metselaar, G. A.; Fragoso, A.; Santos, E.; Bo, C.; de Mendoza, J. *Angew. Chem., Int. Ed.* **2007**, *46*, 202–205.

- (48) Commercially available fullerene extract was chosen to validate the feasibility of this method. The measured C_{60}/C_{70} ratio (79.9:20.1) is in good agreement with the given data (80:20 by HPLC) (Figure S29 in the Supporting Information).
- (49) Kang, S. O.; Day, V. W.; Bowman-James, K. Inorg. Chem. 2010, 49, 8629–8636.
- (50) Collman, J. P.; Wang, Z.; Straumanis, A. J. Org. Chem. 1998, 63, 2424–2425.